

DECLARATION OF PERFORMANCE

No. 0088 - EN

- 1. Unique identification code of the product-type: fischer injection system FIS EM
- 2. Intended use/es:

Product	Intended use/es
Bonded anchor for use in concrete	Post-installed fastening in cracked or uncracked concrete, see appendix,
	especially Annexes B 1 to B 11.

3. Manufacturer:

fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2016-04

European Technical Assessment: ETA-10/0012; 2016-09-12

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See appendix, especially Annexes C 1 to C 10
Characteristic resistance for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See appendix, especially Annexes C 11 to C 14

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A 1
Resistance to fire	NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Mylal

Tumlingen, 2016-09-19

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The fischer injection system FIS EM is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EM and a steel element according to Annex A2.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

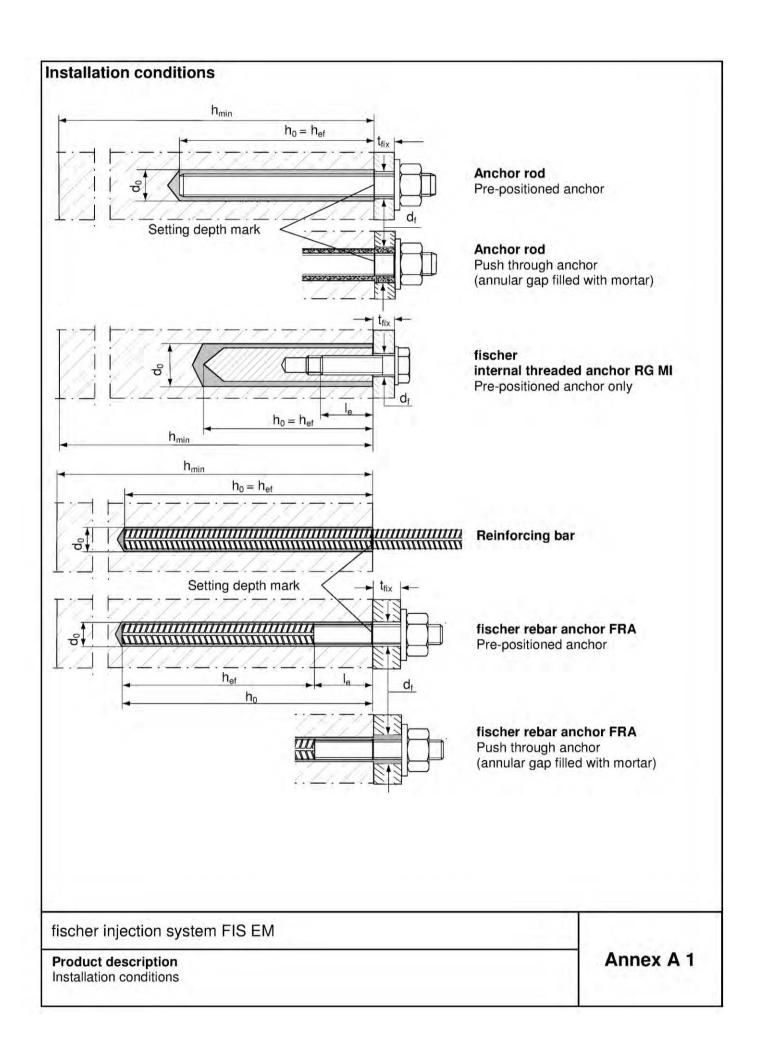
Essential characteristic	Performance
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See Annex C 1 to C 10
Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See Annex C 11 to C 14

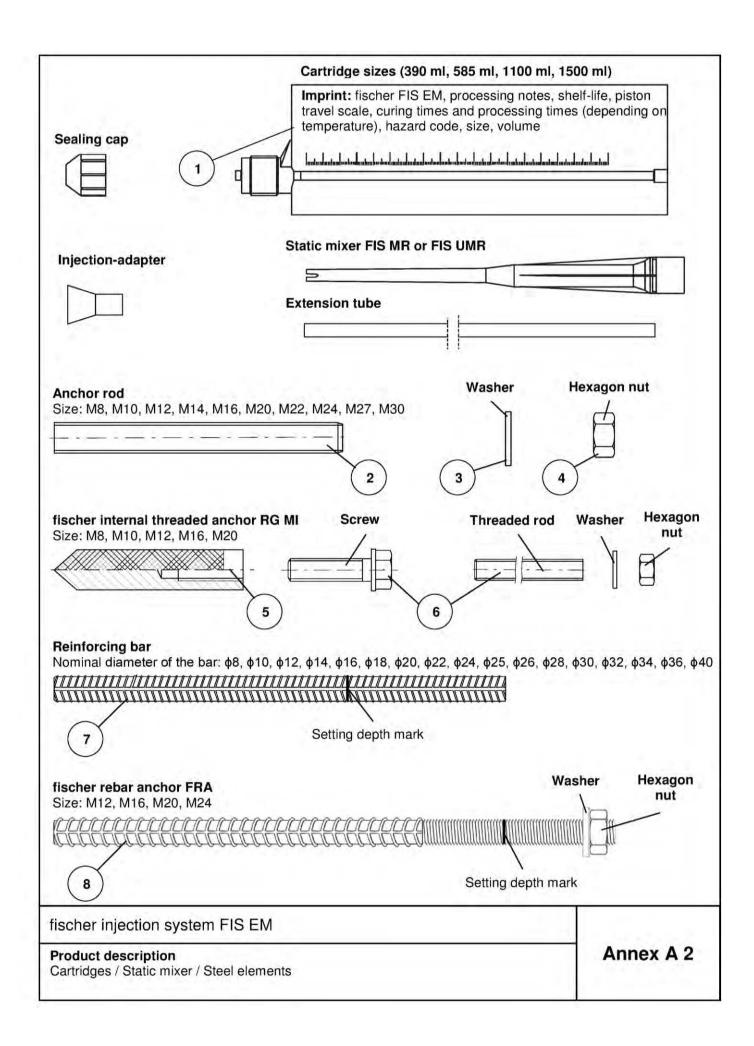
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.


3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Part	Designation		Mat	erial	
1	Mortar cartridge				
	Steel grade	Steel, zinc plated Stainless steel A4			High corrosion resistant steel C
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation ¹⁾	$50, 70$ EN ISO 35 1.4401; 1.4- 1.4571; 1.4- 1.4062, 1.4 EN 1008 $f_{uk} \le 100$ $A_5 > fracture e$	ty class 0 or 80 506-1:2009 404; 1.4578; 439; 1.4362; 662, 1.4462 8-1:2014 10 N/mm ² 12 % longation ¹⁾	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation ¹⁾
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4578;1.45 1.4	1.4404; 571; 1.4439; 362 88-1:2014	1.4565;1.4529 EN 10088-1:2014
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014		Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
6	Screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, ISO 4042:1999 A2K fracture elongation $A_5 > 8 \%$	7 EN ISO 35 1.4401; 1.4 1.4571; 1.4 EN 1008 fracture 6	ty class 70 506-1:2009 404; 1.4578; 439; 1.4362 8-1:2014 elongation • 8 %	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 fracture elongation $A_5 > 8$ %
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, cla f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$			+AC:2010
8	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods cla with f_{yk} and k according to N of EN 1992-1-1:2004+AC:2 $f_{uk} = f_{tk} = k \cdot f_{yk}$: 70 or 80 1:2009 9, 1.4401, 1.4404, 1.4571, 9, 1.4362, 1.4062 014		
1) Fr	acture elongation A ₅ > 8	%for applications without re	quirements fo	r seismic perfo	rmance
	ner injection system F luct description prials	FIS EM			Annex A 3

Specifications of intended use (part 1)

Table B1: Overview use and performance categories

Anchorages subje	ect to	FIS EM with									
	Anch	or rod	fischer internal threaded anchor RG MI		Reinforcing bar		fischer rebar anchor FRA				
Hammer drilling with standard drill bit	D440000000	all sizes									
Hammer drilling with hollow drill bit (Heller "Duster Expert" or Hilti "TE-CD, TE-YD")	1		Nominal drill bit diameter (d_0) 12 mm to 35 mm								
Diamond drilling		all sizes									
Static and quasi	uncracked concrete	all sizes	Tables: C1, C5,	all sizes	Tables: C2, C5,	all sizes	Tables: C3, C5,	all sizes	Tables: C4, C5,		
static load, in	cracked concrete	uii 51265	C6, C10	uii 51266	C7, C11	uii 01200	C8, C12	uii 51265	C9, C13		
Seismic performance category (only	C1	M10 to M30	Tables: C14, C16, C17			φ10 to φ32	Tables: C15, C16, C18				
hammer drilling with Standard / hollow drill bits)	C2	M12, M16, M20, M24	Tables: C14, C16, C19								
Llan antagory	dry or wet concrete				all s	izes					
Use category	flooded hole				all s	izes					
Installation temperature					+5 °C to	+40 °C					
In-service	Temperature range I	-40 °C to) +60 °C	max. shor	t term tem	perature +					
temperature Temperature 40 °C to 173 °C (max. lor						ax. long term temperature +50 °C and ax. short term temperature +72 °C)					

fischer injection system FIS EM	
Intended Use Specifications (part 1)	Annex B 1

Specifications of intended use (part 2)

Base materials:

 Reinforced or unreinforced normal weight concrete Strength classes C20/25 to C50/60 according to EN 206-1:2000

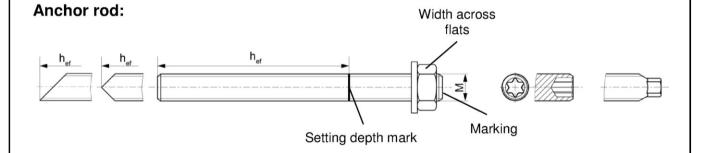
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed


Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS EM	
Intended Use Specifications (part 2)	Annex B 2

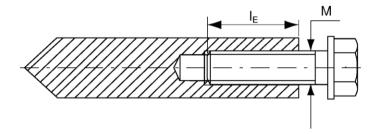
Table B2: Installa	Table B2: Installation parameters for anchor rods												
Size				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Width across flats		SW		13	17	19	22	24	30	32	36	41	46
Nominal drill bit diameter		d ₀		12	14	14	16	18	24	25	28	30	35
Drill hole depth		h ₀			a.			h ₀ =	h _{ef}				
Effective		h _{ef,min}		60	60	70	75	80	90	93	96	108	120
anchorage depth		$h_{\text{ef,max}}$		160	200	240	280	320	400	440	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Diameter of clearance hole in -	pre- positioned anchorage	d _f		9	12	14	16	18	22	24	26	30	33
the fixture ¹⁾	push through anchorage	d _f		14	16	16	18	20	26	28	30	33	40
Minimum thickness of concrete member		h _{min}			h _{ef} + 30 (≥ 100)				ŕ	n _{ef} + 2d	o		
Maximum installation torque		T _{inst,max}	[Nm]	10	20	40	50	60	120	135	150	200	300

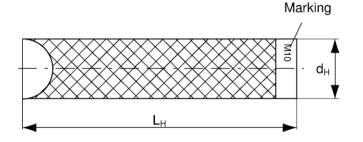
¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Marking (on random place) fischer anchor rod:

Property class 8.8, stainless steel, property class 80 or high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: •• Or colour coding according to DIN 976-1

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:


- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked


fischer injection system FIS EM	
Intended Use Installation parameters anchor rods	Annex B 3

Size	М8	M10	M12	M16	M20				
Diameter of anchor	d _H		12	16	18	22	28		
Nominal drill bit diameter	d ₀		14	18	20	24	32		
Drill hole depth	h ₀		$h_0 = h_{ef}$						
Effective anchorage depth $(h_{ef} = L_H)$	h_{ef}		90	90	125	160	200		
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125		
Diameter of clearance hole in the fixture ¹⁾	d_{f}		9	12	14	18	22		
Minimum thickness of concrete member	h_{min}		120	125	165	205	260		
Maximum screw-in depth	I _{E,max}		18	23	26	35	45		
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20		
Maximum installation torque	$T_{\text{inst,max}}$	[Nm]	10	20	40	80	120		

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

fischer internal threaded anchor RG MI

Marking: Anchor size

e.g.: **M10**

Stainless steel additional A4

e.g.: M10 A4

High corrosion resistant steel

additional C e.g.: M10 C

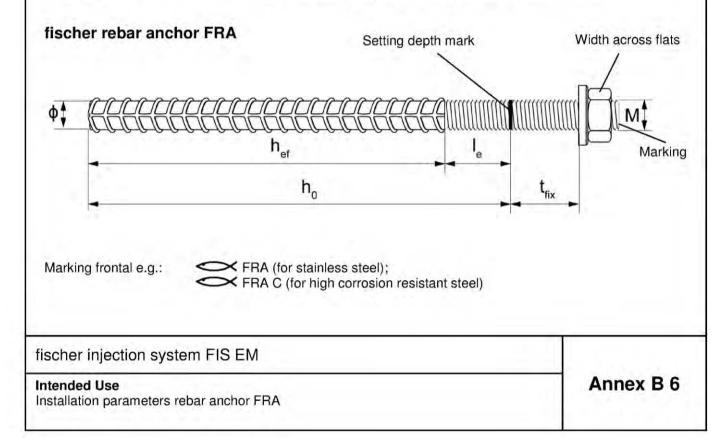
Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

fischer injection system FIS EM	
Intended Use Installation parameters fischer internal threaded anchors RG MI	Annex B 4

Table B4: Installation para	ameters	s for re	einfo	rci	ng	bar	ſS							
Nominal diameter of the bar		ф	8 ¹⁾)	10) ¹⁾	12	2 ¹⁾	14	16	18	20	22	24
Nominal drill bit diameter	d ₀		10	12	12	14	14	16	18	20	25	25	30	30
Drill hole depth	h ₀				$h_0 = h_{ef}$									
Effective	h _{ef,min}		60)	60	0	7	0	75	80	85	90	94	98
anchorage depth	h _{ef,max}	[mm]	mm] 160 40		200		24	10	280	320	360	400	440	480
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[]			4	5	5	5	60	65	75	85	95	105
Minimum thickness of concrete member	h _{min}		h _{ef} + 30 (≥ 100)							h _{ef} + 2	d ₀			
Nominal diameter of the bar		ф	25	5	26	6	2	8	30	32	34	36	40	
Nominal drill bit diameter	d ₀		30)	3	5	3	5	40	40	40	45	55	
Drill hole depth	h ₀									$h_0 = h_{ef}$				
Effective	h _{ef,min}		100	0	10	04	11	12	120	128	136	144	160	
anchorage depth	h _{ef,max}	[mm]	500	0	52	20	56	60	600	640	680	720	800	
Minimum spacing and minimum edge distance	S _{min} = C _{min}		110	0	12	20	18	30	140	160	170	180	200	
Minimum thickness of concrete member	h _{min}									h _{ef} + 2d ₀)			

¹⁾ Both drill bit diameters can be used

Reinforcing bar



- The minimum value of related rib area $f_{\text{R,min}}$ must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \varphi \le h_{rib} \le 0.07 \cdot \varphi$ (φ = Nominal diameter of the bar , h_{rib} = rib height)

fischer injection system FIS EM	
Intended Use Installation parameters reinforcing bars	Annex B 5

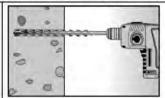
Size				M1	2 ¹⁾	M16	M20	M24			
Nominal diameter of the bar		ф		12	2	16	20	25			
Width across flats		SW		19	9	24	30	36			
Nominal drill bit diameter		d ₀		14 16		20	25	30			
Drill hole depth		ho				h _{ef}	+ l _e				
Effective		h _{ef,min}		70 140		70		80	90	96	
anchorage depth		h _{ef,max}				220	300	380			
Distance concrete surface to welded join		l _e	[mm]			10	00				
Minimum spacing and minimum edge distance		S _{min} = C _{min}		58	5	65	85	105			
Diameter of clearance hole in	pre- positioned anchorage	≤ d _f		14		18	22	26			
the fixture ²⁾	push through anchorage	≤ d _f		18	3	22	26	32			
Minimum thickness of concrete member		h _{min}		h ₀ + (≥ 1			h ₀ + 2d ₀				
Maximum installation torque	1	T _{inst,max}	[Nm]	40)	60	120	150			

¹⁾ Both drill bit diameters can be used ²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

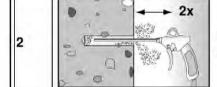
Table B	6: Parameters	of steel brush	FIS BS	BSB Ø
I able b	U. I didilicicio	OI SECTIONASII		

, i				FIS BS											FIS BSB			
Drill bit diameter	d ₀	far and	12	14	16	18	20	24	25	28	30	32 35		40	45	55		
Steel brush diameter	d _b	- [mm]	14	16	20		25	26	27	30		40		42	47	58		

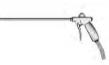
Table B7: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)


System temperature [°C]	Maximum processing time t _{work} [minutes]	Minimum curing time ¹⁾ t _{cure} [hours]
+5 to +10	120	40
≥ +10 to +20	30	18
≥ +20 to +30	14	10
≥ +30 to +40	7	5

¹⁾ In wet concrete or flooded holes the curing times must be doubled


fischer injection system FIS EM	
Intended Use	Annex B 7
Cleaning tools	
Processing times and curing times	

Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)

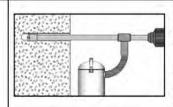
Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3, B4, B5

Blow out the drill hole twice, with oil-free compressed air (p ≥ 6 bar)

3 2x db

Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **Table B6**

Blow out the drill hole twice, with oil-free compressed air ($p \ge 6$ bar)



Go to step 6

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

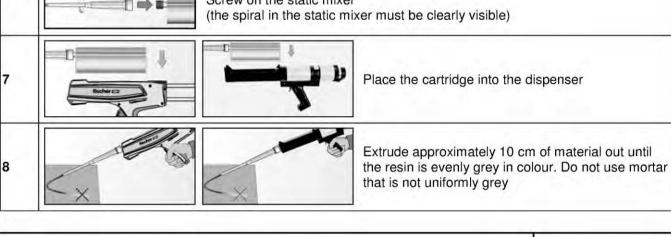
Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process. Diameter of drill hole d_0 and drill hole depth h_0 see **Tables B2**, **B3**, **B4**, **B5**

Go to step 6

2

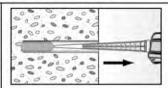

fischer injection system FIS EM

Intended use

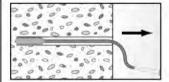
Installation instructions part 1

Annex B 8

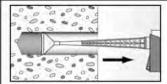
Installation instructions part 2 Drilling and cleaning the hole (wet drilling with diamond drill bit) Drill the hole. Drill hole diameter do and Break the drill core drill hole depth ho see and draw it out Tables B2, B3, B4, B5 2 Flush the drill hole with clean water until it flows clear 3 Blow out the drill hole twice, using oil-free compressed air (p > 6 bar) Brush the drill hole twice using a power drill. Corresponding brushes see Table B6 5 Blow out the drill hole twice, using oil-free compressed air (p > 6 bar) Preparing the cartridge Remove the sealing cap 6 Screw on the static mixer (the spiral in the static mixer must be clearly visible)


fischer injection system FIS EM

Intended use
Installation instructions part 2

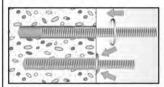

Annex B 9

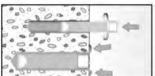
Installation instructions part 3


Injection of the mortar

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

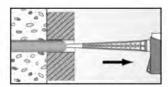



For overhead installation, deep holes $h_0 > 250$ mm or drill hole diameter $d_0 \ge 40$ mm use an injection-adapter

Installation of anchor rods or fischer internal threaded anchors RG MI

10

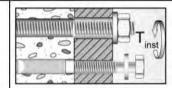
9



Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Press the threaded rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element

For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges)


For push through installation fill the annular gap with mortar

11

Wait for the specified curing time t_{cure} see Table B7

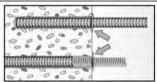
12

Mounting the fixture T_{inst,max} see **Tables B2 and B3**

fischer injection system FIS EM

Intended use

Installation instructions part 3

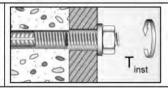

Annex B 10

Installation instructions part 4

Installation reinforcing bars and fischer rebar anchor FRA

Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark

10


When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole

11

Wait for the specified curing time t_{cure} see **Table B7**

12

Mounting the fixture T_{inst,max} see **Table B5**

fischer injection system FIS EM

Intended use

Installation instructions part 4

Annex B 11

Size					M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Bearin	g capacity unde	r tensile loa	d, ste	el fail	ure									
gu s	Steel zinc plated		5.8		19	29	43	58	79	123	152	177	230	28
eari N _{Rk}	- Steel zinc plated		8.8		29	47	68	92	126	196	243	282	368	449
oft.	Stainless steel	Property class	50	[kN]	19	29	43	58	79	123	152	177	230	28
Charact.bearing capacity N _{Rk.s}	A4 and High corrosion	Ciass	70		26	41	59	81	110	172	212	247	322	39
ည် ဒ	resistant steel C		80		30	47	68	92	126	196	243	282	368	449
Partia	safety factors1)													
_	Steel zinc plated		5.8							50				
afet)		5. 1	8.8						-	50				
artial safet factor /ms,n	Stainless steel	Property class	50	[-]					2,	86				
Partial safety factor //ws.n	A4 and High corrosion	Ciass	70						1,502)	/ 1,87				
4	resistant steel C		80						1,0	60				
Bearin	ng capacity unde	r shear load	, stee	l failu	re									
withou	ut lever arm													
ng s	Steel zinc plated		5.8		9	15	21	29	39	61	76	89	115	14
eari V _{Rk}	Steel zinc plated	D	8.8		15	23	34	46	63	98	122	141	184	22
ct.b	Stainless steel A4 and High corrosion	Property class	50	[kN]	9	15	21	29	39	61	76	89	115	14
nara		-12-7	70		13	20	30	40	55	86	107	124	161	19
50	resistant steel C	80			15	23	34	46	63	98	122	141	184	22
	ty factor acc. to CE 09 Section 6.3.2.1		k ₂	[-]					1	,0				
1	ever arm	9					_		_					
	Selection of the selection		5.8		19	37	65	104	166	324	447	560	833	112
ending M ^o Rk,s	Steel zinc plated		8.8		30	60	105	167	266	519	716	896	1333	179
t.bei	Stainless steel	Property	50	[Nm]	19	37	65	104	166	324	447	560	833	112
Charact.b moment	A4 and	class	70		26	52	92	146	232	454	626	784	1167	157
Cha	High corrosion resistant steel C		80		30	60	105	167	266	519	716	896	1333	179
Partia	safety factors1)					1130								
			5.8		_				1,3	25				
rety As.v	Steel zinc plated		8.8						1,	25				
al sa	Stainless steel	Property	50	[-]					2,	38				
Partial safety factor ms.v	A4 and High corrosion	class	70						1,252)	/ 1,56	t L			
g	resistant steel C		80						1,	33				
	absence of other n ly admissible for s	The state of the s			and A	₅ > 12 °	% (e.g	fische	r anch	or rods	s)			
fisch	er injection sys	tem FIS E	M											

Size					М8	M10	M12	M16	M20
Bearing capacity	unde	r tensile loa	ad, ste	el failu	re				
26-3-20-1-1-1		Property	5.8		19	29	43	79	123
Characteristic bearing capacity	NL	class	8.8	[kN]	29	47	68	108	179
with screw	$N_{Rk,s}$	Property	A4	[KIN]	26	41	59	110	172
		class 70	С		26	41	59	110	172
Partial safety fact	tors ¹⁾							W	
		Property	5.8				1,50		
Partial safety		class	8.8	r1 _			1,50		
factor	ΥMs,N	Property	A4	[-] -			1,87		
		class 70	С				1,87		
Bearing capacity	unde	r shear loa	d, stee	l failure	9				
without lever arm	1								1.0
Observatoristis	thout lever arm naracteristic paring capacity V _{Rk,s}	Property	5.8		9,2	14,5	21,1	39,2	62,0
	Vn	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
with screw	♥ HK,S	Property	A4	[[5,5]	12,8	20,3	29,5	54,8	86,0
		class 70	С		12,8	20,3	29,5	54,8	86,0
			k ₂	[-]			1,0		
with lever arm									
		Property	5.8		20	39	68	173	337
Characteristic	N40	class	8.8	[Nm]	30	60	105	266	519
with screw	IVI Rk,s	Property	A4	[[[,,,]]	26	52	92	232	454
		class 70	С		26	52	92	232	454
Partial safety fact	tors1)								
		Property	5.8				1,25		
Partial safety	ctility factor acc. to CE 12-4-5:2009 Section 6 14 lever arm aracteristic 15 ding moment M ⁰ _{Rk,s} 16 screw 16 safety factors 1) 17 tial safety 17 or YMs,V	class	8.8	[-]			1,25		1,25 / 1,502
factor	YMs,V	Property	A4	[-]			1,56		
		class 70	С	7			1,56		

¹⁾ In absence of other national regulations
²⁾ Only for steel failure without lever arm

fischer	injection	system	FIS	FM
11301101	HILOCHOLL	System	1 10	LIVI

Characteristic steel bearing capacity of fischer internal threaded anchor RG MI

Table C3: Cha she		es for the orcing ba		el b	ear	ing	ca	pa	city	un	dei	te	nsil	e/	
			1 2	1	1			T	1						Т

Nominal diameter of the bar		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Bearing capacity under tensile	load, ste	el fail	ure																
Characteristic bearing capacity	N _{Rk,s}	[kN]								A	· fu	k ¹⁾							
Bearing capacity under shear le	oad, stee	l failu	re																
without lever arm																			
Characteristic bearing capacity	$V_{Rk,s}$	[kN]								0,5	As	f _{uk} 1)						
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]									0,8								
with lever arm																			
Characteristic bending moment	M ⁰ Rk,s	[Nm]	1						1	,2 ·	Wel	· fuk	1)						

 $^{^{1)}}$ f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar

Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA

Size			M12	M16	M20	M24						
Bearing capacity under tensile	load, ste	el failur	failure									
Characteristic bearing capacity	N _{Rk,s}	[kN]	63	111	173	270						
Partial safety factors1)												
Partial safety factor	γMs,N	[-]		1	,4							
Bearing capacity under shear I	oad, stee	l failure										
without lever arm												
Characteristic bearing capacity	$V_{Rk,s}$	[kN]	30	55	86	124						
Ductility factor acc. to CEN/TS 1992-4-5:2009 Section 6.3.2.1	k ₂	[-]		1	,0							
with lever arm												
Characteristic bearing capacity	M ⁰ Rk,s	[Nm]	92	233	454	785						
Partial safety factors ¹⁾												
Partial safety factor	γMs,V	[-]		1,	56							
	-											

¹⁾ In absence of other national regulations

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of reinforcing bars and fischer rebar anchors FRA

Searing capacity under tensile load Factors acc. to CEN/TS 1992-4:2009 Section 6.2.2.3	Size											All	Siz	es						
Uncracked concrete Kucr Cracked concrete Kucr Kcr Cracked concrete Kucr Kcr Cracked concrete Kucr T, 2 T	Bearing capacity under ter	nsile loa	d) I								7						
Tracked concrete R _{cr} Factors for the compressive strength of concrete > C20/25 T,02 T,04 T,04 T,05 T,06 T,07 T,0	Factors acc. to CEN/TS 19	92-4:200	9 Se	ction 6	.2.2	.3														
Factors for the compressive strength of concrete > C20/25 T1,02 T1,04 T1,06 T1,07	Uncracked concrete		kucr	r.1								1	0,1							
C25/30 C30/37 C35/45 C45/55 C45/55 C50/60 C45/55 C	Cracked concrete		k _{cr}	1-1								19	7,2							
Increasing	Factors for the compressive	ve stren	gth o	f conc	rete	> C	20/2	5												
Increasing factor C35/45 C40/50 C45/55 C50/60 T1,08 T1,08 T1,09 T1,	(25/30										1	,02							
Figure Cado		030/37										1	,04							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		235/45										1	,06	i i						
C45/55 C50/60		240/50	Ψ_{c}	[-]								1	,07							
Edge distance	TOT TRK	245/55			11 =							1	,08	-						
		050/60										1	,09							
	Splitting failure												-							
		_{of} ≥ 2,0										1.	0 h	st.						
N N N N N N N N N N			Coren								-	-		*				_		
Spacing Scr.sp	The state of the s		or,op	[mm]																
Concrete cone failure acc. to CEN/TS 1992-4-5:2009 Section 6.2.3.2			Seren			. 1					7	_								
Edge distance Spacing				992-4-5	5:20	09 S	ecti	on	6.2.	3.2			-01,8	Þ						
Spacing Sor.N Page Spacing Spac				1000								1.	5 h.	of						
Page				[mm]										ink						
The value of her (= h) under shear load Max M10 M12 M14 M16 M20 M22 M24 M27 M36													- (1,1							
All installation conditions					_															
All installation conditions = [-] 1,0 Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _t) min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M14 M16 M20 M22 M24 M27 fischer anchor rods and standard threaded rods minternal threaded anchors RG MI minternal threaded anchors RG MI minternal threaded anchors FRA d minternal threaded anchor			Va																	
Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= _i) min (h _{ef} ; 8d) min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M14 M16 M20 M22 M24 M27 M25 M25	All installation conditions			[-]									1,0							
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f)			Yinst	1021																
Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _t)	Concrete pry-out failure																			
Concrete edge failure The value of hef (= lf) under shear load Calculation diameters Size M8 M10 M12 M14 M16 M20 M22 M24 M27 fischer anchor rods and standard threaded rods fischer internal threaded anchors RG MI fischer rebar anchors FRA Nominal diameter of the bar M8 N10 N12 N14 N16 N20 N22 N24 27 12 14 16 20 22 24 27 13 15 16 18 22 28 12 16 20 25 10 20 25 10 20 25 10 20 25 24 30 32 34 35	Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009	. to	k ₍₃₎	[-]								1	2,0							
The value of h _{ef} (= l _t) under shear load [mm] min (h _{ef} ; 8d) Calculation diameters Size M8 M10 M12 M14 M16 M20 M22 M24 M27 fischer anchor rods and standard threaded rods 8 10 12 14 16 20 22 24 27 fischer internal threaded anchors RG MI fischer rebar anchors FRA d mm] 12 16 18 22 28 Nominal diameter of the bar Φ 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 3				1							_									
Size M8 M10 M12 M14 M16 M20 M22 M24 M27 fischer anchor rods and standard threaded rods d 8 10 12 14 16 20 22 24 27 fischer internal threaded anchors RG MI fischer rebar anchors FRA d 12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20 22 24 25 26 28 30 32 34 3	The value of h_{ef} (= l_f)		I	[mm]	7							min ((h _{ef} ;	8d)						
Size M8 M10 M12 M14 M16 M20 M22 M24 M27 fischer anchor rods and standard threaded rods d 8 10 12 14 16 20 22 24 27 fischer internal threaded anchors RG MI fischer rebar anchors FRA d 12 16 18 22 28 Nominal diameter of the bar φ 8 10 12 14 16 20 25	Calculation diameters																			
fischer anchor rods and standard threaded rods fischer internal threaded anchors RG MI fischer rebar anchors FRA fischer rebar anchors FRA fischer rebar anchors FRA fischer rebar anchors frac fischer rebar anchors FRA fischer reba	Size				M	3 1	V10	N	112	M	14	M16	1 6	120	M2:	2	M24	4	M27	МЗ
internal threaded anchors RG MI d	fischer anchor rods and		d						6.61							1				30
Nominal diameter of the bar ϕ 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 3		G MI	d	[mm]	12	2	16		18	-		22		28						
	fischer rebar anchors FRA		d						12		-	16		20			25	1		
	Nominal diameter of the bar			ф	8	10	12	14	16	18	20	22	24	25	26 2	8	30	32	34	36 4
Reinforcing bar [mm] 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 3	Reinforcing bar			[mm]	8	10	12	14	16	_	_	-				_	_	32	34	36
fischer injection system FIS EM		FIS E	M	1								2000								

Size			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Combined pullout and concre	ete cone	failure										
Calculation diameter	d	[mm]	8	10	12	14	16	20	22	24	27	30
Uncracked concrete												
Characteristic bond resistant	ce in un	cracked c	oncre	ete C20)/25							
Hammer-drilling with standard	drill bit o	r hollow dr	ill bit	(dry an	d wet o	concre	te)					
Tem- 1: 35 °C / 60 °C		22	16	16	15	14	14	13	13	13	12	12
perature II: 50 °C / 72 °C	T _{Rk,ucr}	[N/mm ²]	15	14	14	13	13	12	12	12	11	11
Hammer-drilling with standard	drill bit o	r hollow dr	ill bit	(floode	d hole)							
Tem- 1: 35 °C / 60 °C			16	16	15	13	13	11	11	10	10	9
perature	τ _{Rk,ucr}	[N/mm ²]	15	14	14	13	12	11	10	10	9	9
rango		!!	73	1 1 1 1 1 1	1	13	12	11	10	10	9	9
Diamond-drilling (dry and wet of Tem-	concrete	as well as					1.5					
perature	τ _{Rk,ucr}	[N/mm ²]	16	15	13	12	12	10	10	10	9	9
range II: 50 °C / 72 °C	- HK,OCI		15	14	12	11	11	10	9	9	8	8
Installation safety factors												
Dry and wet concrete	$\gamma_2 = \gamma_{inst}$	[-]			1	,0				1	,2	
Flooded hole	12 - Tinst	1.3					1	,4				
Cracked concrete												
Characteristic bond resistan				2 - 1/2 1/6	-							
Hammer-drilling with standard	drill bit or	r hollow dr	ill bit	and dia			1	1	T	T		
Tem- I: 35 °C / 60 °C	T-	[N/mm ²]	7	7	7	7	6	6	7	7	7	7
range II: 50 °C / 72 °C	τ _{Rk,cr}	[13/7/11/2]	7	7	7	7	6	6	7	7	7	7
Hammer-drilling with standard	drill bit or	hollow dr	ill bit	and dia	mond-	drilling	(flood	led hol	e)			
Tem- I: 35 °C / 60 °C			6	7,5	7,5	7	6	6	6	6	6	6
perature II: 50 °C / 72 °C	T _{Rk,cr}	[N/mm ²]	6	7	7	7	6	6	6	6	6	6
Installation safety factors				1						_	_	
Dry and wet concrete					- 1	,0				1	,2	_
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]			1,2	,,,				1,4	,	

fischer injection system FIS EM	
Performances Characteristic values for static or quasi-static action under tensile load for fischer	Annex C 5
anchor rods and standard threaded rods (uncracked or cracked concrete)	

Size			М8	M10	M12	M16	M20
Combined pullout and conc	rete con	e failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resistar	ice in un	cracked co	ncrete C2	0/25			
Hammer-drilling with standard	drill bit o	r hollow dril	bit (dry ar	d wet concre	te)		
Tem- 1: 35 °C / 60 °C		21	15	14	14	13	12
perature II: 50 °C / 72 °C	τ _{Rk,ucr}	[N/mm²] —	14	13	13	12	11
Hammer-drilling with standard	drill bit o	r hollow dril	bit (floode	d hole)			
Tem- 1: 35 °C / 60 °C		25	14	12	12	11	10
perature II: 50 °C / 72 °C	τ _{Rk,ucr}	[N/mm ²]	13	12	11	10	9
Diamond-drilling (dry and wet	concrete	as well as f	looded hole	<u>e)</u>			
Tem- 1: 35 °C / 60 °C		21	13	12	11	10	9
perature II: 50 °C / 72 °C	TRk,ucr	[N/mm²] —	12	11	10	9	8
Installation safety factors							
Dry and wet concrete	-24 34	[-]		1,0		- 1	.2
Flooded hole	$-\gamma_2 = \gamma_{inst}$	1-1			1,4		
Cracked concrete							
Characteristic bond resistar							
Hammer-drilling with standard	drill bit o	r hollow dril	bit and dia	amond-drilling	(dry and we	t concrete)	
Tem- 1: 35 °C / 60 °C		[NI/mm ²]	7	6	6	7	7
perature II: 50 °C / 72 °C	T _{Rk,cr}	[N/mm ²]	7	6	6	7	7
Hammer-drilling with standard	drill bit o	r hollow dril	bit and dia	amond-drilling	(flooded hol	<u>e)</u>	
Tem- 1: 35 °C / 60 °C		211 21	7	6,5	6	6	6
perature II: 50 °C / 72 °C	T _{Rk,cr}	[N/mm ²]	7	6	6	6	6
Installation safety factors							
Dry and wet concrete		[1]		1,0		1,	2
Flooded hole	$-\gamma_2 = \gamma_{inst}$	[-]		1,2		1.	4

fischer injection system FIS EM	
Performances	Annex C 6
Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI (uncracked or cracked concrete)	

Nominal diameter of the bar		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	4
Combined pullout and concr	ete con	failure																	
Calculation diameter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	4
Incracked concrete							1 5							175		1			
Characteristic bond resistan	ce in un	cracked (con	cret	e C2	20/2	5												
Hammer-drilling with standard	drill bit o	r hollow d	Irill b	oit (c	lry a	nd v	vet	con	crete	<u>e)</u>						Ζ,			
Tem- 1: 35 °C / 60 °C		2.	16	16	15	14	14	14	13	13	13	13	13	12	12	12	12	12	1
perature II: 50 °C / 72 °C	TRk,ucr	[N/mm ²]	15	14	14	13	13	13	12	12	12	12	11	11	11	11	11	11	1
Hammer-drilling with standard	drill bit o	r hollow d	rill b	oit (fl	ood	ed h	nole)											
Гет- I: 35 °C / 60 °C		2	16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	
perature II: 50 °C / 72 °C	τ _{Rk,ucr}	[N/mm ²]	15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	
Diamond-drilling (dry and wet o	concrete	as well as	s flo	ode	d ho	le)													_
Tem- I: 35 °C / 60 °C		2	16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	
perature II: 50 °C / 72 °C	T _{Rk,ucr}	[N/mm ²]	15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	Ī
nstallation safety factors		1			-														_
Dry and wet concrete		145			- 5	1,0								1.	,2				
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]									1,4								
Cracked concrete																			
Characteristic bond resistan	ce in cra	cked co	ncre	te C	220/	25													_
Hammer-drilling with standard	drill bit o	r hollow d	Irill b	it ar	nd d	iam	ond	-dril	ling	(dry	and	d we	et co	ncre	ete)				
Γem- I: 35 °C / 60 °C		2	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	
perature II: 50 °C / 72 °C	τ _{Rk,cr}	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	t
Hammer-drilling with standard	drill bit o	r hollow d	rill b	it ar	nd d	iam	ond	-dril	ling	(flo	odeo	d ho	le)						1
Γem- I: 35 °C / 60 °C			T =	_	6,5		7		6	6	6	6	6	6	6	5	5	5	T
perature II: 50 °C / 72 °C	T _{Rk,cr}	[N/mm ²]	_	-	6,5	-		6	6	6	6	6	6	6	6	5	5	5	
nstallation safety factors	_																		_
Dry and wet concrete				_		1,0		_	_				-	1	,2			_	-
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]			1,		+							1,4					-
																			_

Size		M12	M16	M20	M24
Combined pullout and concrete	cone failure				
Calculation diameter	d [mm]	12	16	20	25
Uncracked concrete					
Characteristic bond resistance i	n uncracked co	ncrete C20/2	5		
Hammer-drilling with standard drill	bit or hollow drill	bit (dry and w	vet concrete)		
Tem- 1: 35 °C / 60 °C	2	15	14	13	13
perature II: 50 °C / 72 °C τ _R	k,ucr [N/mm²]	14	13	12	12
Hammer-drilling with standard drill	bit or hollow drill	bit (flooded h	ole)		
Tem- 1: 35 °C / 60 °C	53.1/227	14	12	11	10
perature II: 50 °C / 72 °C π	k,ucr [N/mm²]	13	12	11	9
Diamond-drilling (dry and wet cond	crete as well as fl	ooded hole)			
Tem- 1: 35 °C / 60 °C	75.11 27	13	12	10	9
perature II: 50 °C / 72 °C τ _H	k,ucr [N/mm²]	12	11	10	9
Installation safety factors					
Dry and wet concrete	γ _{inst} [-]		1,0		1,2
Flooded note	Yinst [-]		1	,4	
Cracked concrete					
Characteristic bond resistance i					
Hammer-drilling with standard drill	bit or hollow drill	bit and diamo	ond-drilling (dry a	ind wet concrete)
Tem- 1: 35 °C / 60 °C	[N1/mm²]	7	6	6	7
perature II: 50 °C / 72 °C	Rk,cr [N/mm²]	7	6	6	7
Hammer-drilling with standard drill	bit or hollow drill	bit and diamo	nd-drilling (flood	led hole)	
Tem- I: 35 °C / 60 °C	2.	7	6	6	6
perature II: 50 °C / 72 °C τη	Rk,cr [N/mm²]	7	6	6	6
Installation safety factors				5317	
Dry and wet concrete	v [1]		1,0		1,2
Flooded hole	γinst [-]	1	,2	1	4

fischer injection system FIS EM	
Performances Characteristic values for static or quasi-static action under tensile load for fischer rebar anchors FRA (uncracked or cracked concrete)	Annex C 8

Size		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Displace	ment-Factors	for tens	ile load1)								
Uncracke	ed or cracked	concret	e; Tempe	erature ra	ange I, II						
δ _{N0-Factor}	[mm/(N/mm ²)]-	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
δ _{N∞-Factor}	funn/(M/mm)]-	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Displace	ment-Factors	for shea	r load ²⁾								
Uncracke	ed or cracked	concret	e; Tempe	erature ra	ange I, II						
δ _{V0-Factor}	[/ - N]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
δ _{V∞-Factor}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

(V_{Ed}: Design value of the applied shear force)

Table C11: Displacements for fischer internal threaded anchors RG MI

Size		M8	M10	M12	M16	M20
100000	ment-Factors for	tensile load1)			1	
Uncrack	ed or cracked co	ncrete; Tempe	erature range I, II			
δ _{N0-Factor}	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,13
δ _{N∞-Factor}	[[[]]]	0,13	0,15	0,16	0,17	0,19
Displace	ment-Factors for	shear load2)				
Uncrack	ed or cracked co	ncrete; Tempe	erature range I, II			
δ _{V0-Factor}	[mm//LAN]]	0,12	0,09	0,08	0,07	0,05
δ _{V∞-Factor}	[mm/kN]	0,18	0,14	0,12	0,10	80,0

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Nominal of the bar	diameter r	ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Displace	ment-Fact	ors	for t	ensil	e load	11)													
Uncracke	d or crack	ked	cond	crete	Tem	pera	ture r	ange	1, 11										
δ _{N0-Factor}	[mm/(N/mn							0,10											
δ _{N∞-Factor}	[mm/(IX/mn	n)]	0,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,2
Displace	ment-Fact	ors	for s	hear	load	2)													
Uncracke	d or crack	ked	cond	crete	Tem	pera	ture r	ange	1, 11						,				
δ _{V0-Factor}	F		0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
δ _{V∞-Factor}	[mm/kN]	1	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,0
70.	ation of eff	ecti	ve di	splac	emen	t:				²⁾ Ca	lculat	ion of	effec	tive o	lispla	ceme	nt:		
	δ _{N0-Factor} · τ _I			0 -							$\delta = \delta_{V0}$								
	δ _{N∞-Factor} · τ										$_{o} = \delta_{V}$								
(τ _{Ed} : [esign valu	e of	f the	applie	ed ten	sile s	tress)							app	lied s	hear t	force)
Table C	13: Disp	lac	ome	nte	for f i	ech	or ro	har	ancl	ore	ED/								
	is. Disp	iac	Cilic	11115			ei 16	Dai	40.00		1 117	•							
Size					M	12			M	16			M	20			M	24	

3126		10112	IVIIO	IVIZU	IVIZ4
Displacem	ent-Factors for tensi	le load ¹⁾			
Uncracked	or cracked concrete	; Temperature r	ange I, II		
δ _{N0-Factor}	[mm//N/mm ²]]	0,09	0,10	0,11	0,12
$\delta_{\text{N}_{\infty}\text{-Factor}}$ [mm/(N/mm ²)]		0,13	0,15	0,16	0,18
Displacem	ent-Factors for shea	r load ²⁾			
Uncracked	or cracked concrete	; Temperature r	ange I, II		
8		0.12	0.09	0.07	0.06

Uncracked	or cracked concre	te; remperature r	ange i, ii		
δ _{V0-Factor}	[mm/kN]	0,12	0,09	0,07	0,06
δ _{V∞-Factor}	[IIIII/KIN]	0,18	0,14	0,11	0,09
1) Calculati	on of effective displ	acement:	²⁾ Calculat	ion of effective displa	cement:

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N\infty}} &= \delta_{\text{N\infty-Factor}} \cdot \tau_{\text{Ed}} \\ (\tau_{\text{Ed}} \text{: Design value of the applied tensile stress)} \end{split} \qquad \begin{aligned} \delta_{\text{V0}} &= \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}} \\ \delta_{\text{V\infty}} &= \delta_{\text{V\infty-Factor}} \cdot V_{\text{Ed}} \\ (V_{\text{Ed}} \text{: Design value of the applied shear force)} \end{aligned}$$

fischer injection system FIS EM	
Performances	THE RES

Displacements for reinforcing bars and fischer rebar anchors FRA

Table C14: Characteristic values for the steel bearing capacity under tensile / shear load of fischer anchor rods and standard threaded rods under seismic action performance category C1 or C2

Size					M10	M12	M14	M16	M20	M22	M24	M27	M30
Bearing	capacity under te	nsile load,	steel	failur	e ¹⁾								
fischer a	nchor rods and s	tandard the	readed	d rods	s, perf	orman	ce cate	gory C	1				
0 5	Chaol sine plated		5.8		29	43	58	79	123	152	177	230	281
arin ^{R,s,C}	Steel zinc plated		8.8		47	68	92	126	196	243	282	368	449
N N	Stainless steel	Property	50	[kN]	29	43	58	79	123	152	177	230	281
Charact.bearing capacity NRK,S,C1	A4 and High corrosion	class	70	1,,	41	59	81	110	172	212	247	322	393
ट के	resistant steel C		80		47	68	92	126	196	243	282	368	449
ischer a	nchor rods and s	tandard the	readed	rods	s, perf	orman	ce cate	gory C	2				
D 8	Ctool sine plated		5.8			39		72	108		177		
arin Ik,s,c	Steel zinc plated		8.8			61	220	116	173		282		
y N	Stainless steel	Property	50	[kN]		39		72	108		177		
Charact.bearing capacity NRK, S.C2	A4 and High corrosion	class	70			53		101	152		247		
हु हु	resistant steel C		80			61		116	173		282		
Bearing	capacity under sh	near load, s	teel fa	ilure	witho	ut leve	r arm ¹⁾						
ischer a	nchor rods, perfo	rmance ca	tegor	y C1									
	Company of the second		5.8		15	21	29	39	61	76	89	115	141
arin k,s,c	Steel zinc plated		8.8		23	34	46	63	98	122	141	184	225
t.bea	Stainless steel	Property	50	[kN]	15	21	29	39	61	76	89	115	141
Charact.bearing capacity VRK, S. C.1	A4 and High corrosion	class	70		20	30	40	55	86	107	124	161	197
ट व	resistant steel C		80		23	34	46	63	98	122	141	184	225
Standard	threaded rods, p	erformanc	e cate	gory	C1								
D 5	Steel zinc plated	-	5.8		11	15	20	27	43	53	62	81	99
arin ik,s,0	Steel zinc plated		8.8		16	24	32	44	69	85	99	129	158
t.be	Stainless steel	Property	50	[kN]	1.1	15	20	27	43	53	62	81	99
Charact.bearing capacity VRK, S, C1	A4 and High corrosion	class	70		14	21	28	39	60	75	87	113	138
දු සු	resistant steel C		80		16	24	32	44	69	85	99	129	158
ischer a	nchor rods and s	tandard the	readed	rods	s, perf	orman	ce cate	gory C	2				
g 23	Steel zinc plated		5.8			14		27	43		62		
arin ik,s,C	Steer zinc piated		8.8		()	22		44	69		99	(d)	
Charact.bearing capacity VRK,S,C2	Stainless steel	Property	50	[kN]	GAL.	14		27	43	- C-2	62		
pacif	A4 and High corrosion	class	70		(14-)	20		39	60		87		1075
ਨ ਫ਼	resistant steel C		80			22		44	69		99		

¹⁾ Partial safety factors for performance category C1 or C2 see Table C16, for fischer anchor rods FIS A / RGM the factor for steel ductility is 1,0

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of fischer anchor rods and standard threaded rods under seismic action (performance category C1 or C2)

Table C15: Characteristic values for the steel bearing capacity under tensile / shear load of reinforcing bars (B500B) under seismic action performance category C1

Nominal diameter of the bar φ 10 12 14 16 18 20 22 24 25 26 28 30 32 Bearing capacity under tensile load, steel failure 1) Feinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1 Characteristic bearing capacity N_{Rk,s,C1} [kN] 44 63 85 111 140 173 209 249 270 292 339 389 443 Bearing capacity under shear load, steel failure without lever arm 1) Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1 Characteristic bearing capacity V_{Rk,s,C1} [kN] 15 22 30 39 49 61 74 88 95 102 119 137 155

Table C16: Partial safety factors of fischer anchor rods, standard threaded rods and reinforcing bars (B500B)

under seismic action performance category C1 or C2

Size					M10	N	112	M14	M	16	M20	M	22	M24	M2	7	M30
Nominal	diameter of the b	ar		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing	capacity under te	nsile load	l, steel f	failu	re ¹⁾												
tor	Steel zinc plated		5.8	X T							1,50 1,50						
Partial safety factor	Stainless steel	Property	50								2,86						
safet Yms,n	A4 and High corrosion	class	70	[-]					T	1,5	0 ²⁾ / 1	,87					
artial	resistant steel C		80								1,60						
Δ.	Reinforcing bar		B500B	3.1							1,40						
Bearing	capacity under st	near load,	steel fa	ilure	9 ¹⁾												
	Steel zinc		5.8								1,25						
cto	plated		8.8		7 1						1,25	de i					
ety fa	Stainless steel	Property	50								2,38						
safet Y _{Ms,V}	A4 and High corrosion	class	70	[-]						1,2	5 ²⁾ / 1	,56					
Partial safety factor	resistant steel C		80								1,33						
Δ.	Reinforcing bar		B500B								1,50						

¹⁾ In absence of other national regulations

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of reinforcing bars under seismic action (performance category C1); partial safety factors (performance category C1 or C2)

¹⁾ Partial safety factors for performance category C1 see Table C16

Only admissible for steel C, with f_{vk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

Table C1	7: Characteristic values of resistance for fischer anchor rods and standar	rd
	threaded rods in hammer drilled holes under seismic action performance	•
	category C1	

Size				71	M10	M12	M14	M16	M20	M22	M24	M27	M30	
Characte	risti	c bond resista	nce, con	nbined pu	illout a	nd cor	crete c	one fa	lure					
Hammer-	drill	ing with stanc	lard drill	bit or hol	low dr	ill bit (c	Iry and	wet co	ncrete)					
Tem-	-11:	35 °C / 60 °C		FN 1/ 27	7,0	7,0	6,7	6,0	5,7	6,7	6,7	6,7	6,7	
perature - range	II:	50 °C / 72 °C	TRK,C1	[N/mm²]	7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7	
Hammer-	drill	ing with stand	lard drill	bit or hol	low dr	ill bit (f	looded	hole)						
Tem-	1;	35 °C / 60 °C		[N1/ma ma 2]	7,5	7,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	
perature - range	II:	50 °C / 72 °C	TRK,C1	[N/mm²]	6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7	
Installatio	on s	afety factors						W						
Bearing of	capa	city under ten	sile load											
Dry and w	et c	oncrete		1.1			1,0		- 1		1,2			
Flooded hole		$\gamma_2 = \gamma_{inst}$	[-]		1	,2	- 4			1,4				
Bearing of	capa	city under sh	ear load											
All installa	ation	conditions	$\gamma_2 = \gamma_{inst}$	[-]					1,0					

Table C18: Characteristic values of resistance for reinforcing bars in hammer drilled holes under seismic action performance category C1

Nominal	ф	10	12	14	16	18	20	22	24	25	26	28	30	32			
Characte	risti	c bond resista	nce, cor	nbined p	ullou	t and	con	crete	con	e fail	ure						
Hammer-	drill	ing with stand	ard drill	bit or ho	llow	drill l	bit (d	ry an	d we	t cor	crete	e)					- 4
Tem-	1:	35 °C / 60 °C		[N1/mmm 2]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
perature - range	II:	50 °C / 72 °C	- τ _{Rk,C1}	[N/mm²]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammer-	drill	ing with stand	ard drill	bit or ho	llow	drill l	bit (fl	oode	d ho	le)							
Tem-	ıl:	35 °C / 60 °C		[N/mm²]	7,5	6,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
perature - range	II:	50 °C / 72 °C	TRk,C1		6,5	6,5	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Installatio	on s	afety factors															
Bearing of	capa	city under ten	sile load	1													41
Dry and w	et c	oncrete	Sec. 20	1.1			1	,0					-	1,2	-		
Flooded hole $\gamma_2 = \gamma_{inst}$		[-]	1,2						1,4								
Bearing of	apa	city under she	ear load														
All installa	All installation conditions $\gamma_2 = \gamma_{in}$				1,0												

fischer	injection	system	FIS	EM
---------	-----------	--------	-----	----

Performances

Characteristic values under seismic action (performance category C1) for fischer anchor rods, standard threaded rods and reinforcing bars

Table C19: Characteristic values of resistance for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

Size			M12	M16	M20	M24	
Characteristic bond resista	nce, con	bined pullo	out and conci	rete cone failure			
Hammer-drilling with stand	ard drill	bit or hollov	v drill bit (dry	and wet concre	ete)	Ti.	
Tem- 1: 35 °C / 60 °C		[N1/mm 2]	2,2	3,5	1,8	2,4	
perature II: 50 °C / 72 °C	TRK.C2	[N/mm²]	2,2	3,5	1,8	2,4	
Hammer-drilling with stand	ard drill	bit or hollov	w drill bit (flo	oded hole)			
Tem- 1: 35 °C / 60 °C		[N/mm²]	2,3	3,5	1,8	2,1	
perature II: 50 °C / 72 °C	TRk,C2	[14/11111-]	2,3	3,5	1,8	2,1	
Installation safety factors							
Bearing capacity under ten	sile load	1					
Dry and wet concrete	$-\gamma_2 = \gamma_{\text{inst}} \qquad [-]$			1,0		1,2	
Flooded hole			1	,2	1,4		
Bearing capacity under she	ar load						
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]		1	,0		
Displacement-Factors for te	ensile lo	ad ¹⁾					
δ _{N,(DLS)-Factor}	[mm	(N/mm²)]	0,09	0,10	0,11	0,12	
δ _{N,(ULS)} -Factor	[HHIII)	(rwinin)]	0,15	0,17	0,17	0,18	
Displacement-Factors for s	hear loa	d ²⁾					
$\delta_{V,(DLS) ext{-}Factor}$	[mm/kN]		0,18	0,10	0,07	0,06	
$\delta_{V,(ULS)\text{-Factor}}$	Įū	IIII/KINJ	0,25	0,14	0,11	0,09	

¹⁾ Calculation of effective displacement:

 $\delta_{N,(DLS)} = \delta_{N,(DLS)\text{-Factor}} \cdot \tau_{Ed}$

 $\delta_{N,(ULS)} = \delta_{N,(ULS)\text{-Factor}} \cdot \tau_{Ed}$

(τ_{Ed}: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V,(DLS)} = \delta_{V,(DLS)\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V,(ULS)} = \delta_{V,(ULS)\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Characteristic values under seismic action (performance category C2) for fischer anchor rods and standard threaded rods